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ABSTRACT

State-of-the-art neural language models (LMs) represented by Trans-
formers are highly complex. Their use of fixed, deterministic pa-
rameter estimates fail to account for model uncertainty and lead to
over-fitting and poor generalization when given limited training data.
In order to address these issues, this paper proposes a full Bayesian
learning framework for Transformer LM estimation. Efficient vari-
ational inference based approaches are used to estimate the latent
parameter posterior distributions associated with different parts of the
Transformer model architecture including multi-head self-attention,
feed forward and embedding layers. Statistically significant word
error rate (WER) reductions up to 0.5% absolute (3.18% relative) and
consistent perplexity gains were obtained over the baseline Trans-
former LMs on state-of-the-art Switchboard corpus trained LF-MMI
factored TDNN systems with i-Vector speaker adaptation. Perfor-
mance improvements were also obtained on a cross domain LM
adaptation task requiring porting a Transformer LM trained on the
Switchboard and Fisher data to a low-resource DementiaBank elderly
speech corpus.

Index Terms— neural language models, Transformer, Bayesian
learning, model uncertainty, speech recognition

1. INTRODUCTION

Language models (LMs) play an important role in automatic speech
recognition (ASR) systems and many other applications. Language
models compute the joint probability of a given sentence W =
(w1,w2, ...,wT ) as:

p(W) = p(w1,w2, ...,wn) =

n∏
t=1

P (wt|wt−1, ...,w1) (1)

which can be expressed using the multiplication of word level proba-
bilities. The key part of the statistical language modelling problem
is to learn long-range context dependencies. Directly modelling
long-span contexts lead to a severe data sparsity problem for n-gram
language models [1]. To this end, neural language models that can
represent longer span preceding history contexts in a continuous vec-
tor space, for example, based on long-short term memory recurrent
neural networks (LSTM-RNNs) [2, 3] can be used.

In recent years deep Transformer models [4] have defined state-
of-the-art language modelling performance across a range of speech
recognition tasks [5]. The Transformer model architecture features a
deep stacking of multiple self-attention layers [6, 7, 8] with residual
connections [9] and layer normalization [10] to learn long-range con-
texts. Positional encoding layers [4, 11] are used to further augment

Equal contribution

the self-attention layers with sequence order information. Perfor-
mance improvements over the conventional LSTM-RNN language
models have been widely reported [5, 12].

The highly complex neural architecture design of Transformers
often leads to a large increase in the overall system complexity, for
example, up to hundreds of millions of parameters [5]. In common
with other deep learning based language modelling approaches [2, 3],
the use of fixed, deterministic parameter estimates in conventional
Transformer models fails to account for model uncertainty. When
given limited training data, standard Transformer models are prone
to over-fitting and poor generalization. This issue can be further
aggregated when rapidly adapting a well-trained Transformer model
to small size dataset associated with a new style, genre or domain
[12]. The current solution to this problem is largely based on dropout
[13], a simple and effective regularization approach used in many
deep learning systems including neural network language models
[14, 15, 16, 17]. However, it lacks of a mathematically well-defined
framework [18, 19]. The underlying dropout distribution also requires
hyper-parameter setting on an empirical basis for different tasks.

In order to address these issues, this paper proposes a full
Bayesian learning framework to account for model uncertainty in
Transformer language model estimation. An efficient variational
inference based approach is adopted to estimate the latent parameter
posterior distribution. A systematic investigation on the effects of
performing Bayesian estimation in different parts of the Transformer
model architecture including the self-attention, feed forward and
embedding layers is performed. Statistically significant word error
rate (WER) reductions up to 0.5% absolute (3.18% relative) were
obtained over the baseline Transformer LM on a state-of-the-art 900
hour speed perturbed Switchboard corpus trained LF-MMI factored
TDNN system with i-Vector speaker adaptation [20]. Consistent
performance improvements were also obtained on a cross domain
LM adaptation task requiring rapidly porting a Transformer LM
trained on Switchboard and Fisher data to a small size DementiaBank
elderly speech corpus.

The main contributions of this paper are summarized as follows.
First, to the best of our knowledge, this paper is the first work to
apply Bayesian learning methods to Transformer language models for
speech recognition tasks. In contrast, the only previous research on
Bayesian Transformer [19, 21] was conducted on machine translation
and probabilistic programming tasks. Prior works on uncertainty
modelling under the Bayesian framework for neural network language
modelling approaches were limited to RNNs [14] and their LSTM or
GRU based variants [16].

The rest of this paper is organized as follows. Section 2 reviews
the conventional Transformer based language models. Section 3
presents Bayesian Transformer language models. Implementation
issues are discussed in Section 4. Experiments and results are shown
in section 5. Finally, conclusions and future work are discussed in
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section 6.

2. TRANSFORMER LANGUAGE MODELS

The original Transformer architecture proposed in [4] for neural
machine translation contains an encoder and a decoder. In this work,
following [5, 12, 22], the decoder component inside the Transformer
architecture was adopted for language modelling.

As shown in Figure 1, the Transformer language model used in
this work is a stack of 6 Transformer decoder blocks. Each block
consists of a multi-head self-attention [7, 8] module and a feed for-
ward module. Residual connections [9] and layer normalization [10]
are also inserted between these two modules. Let xl−1

t denotes the
output of the (l − 1)-th Transformer block at time t. The multi-head
self-attention module in the l-th block transforms xl−1

t to zl
t is given

as follows:

ql
t,k

l
t,v

l
t = Qxl−1

t ,Kxl−1
t ,Vxl−1

t (2)

hl
t = (hl

t−1, (k
l
t,v

l
t)) (3)

yl
t = Wh

lSelfAttention(hl
t,q

l
t) + xl−1

t (4)

zl
t = LayerNorm(yl

t) (5)

where Q, K, V are projection matrices which map the input xl−1
t

into query ql
t, key kl

t and value vl
t respectively. hl

t is the sequence of
of cached key-value pairs up to time t, which only contains the history
context information and can prevent the model from using any future
context. SelfAttention denotes the scaled multi-head dot product
self-attention [4]. LayerNorm represents the layer normalization
operation [10]. Wh denotes the projection matrix applied to the
outputs of the SelfAttention operation for residual connection [9].
The normalized output zl

t is then fed into the feed forward module:

slt = W2
lGELU(Wl

1zl
t) + zl

t (6)

xl
t = LayerNorm(slt) (7)

In this work, the Gaussian error linear unit (GELU) activation func-
tion [23] is adopted as the activation function in the feed forward
module.

Fig. 1: An illustration of the proposed Bayesian Transformer lan-
guage model architecture. θFi and θAi denotes the Bayesian model
parameters in the feed forward and multi-head self-attention module
respectively.

3. BAYESIAN TRANSFORMER LMS

In this section, we first propose the formulation of the Bayesian
Transformer LM and then present an efficient training scheme based

on vairational inference [24, 25] for the proposed model.

3.1. Bayesian Neural Language Model

Although Transformer LMs have demonstrated state-of-the-art per-
formance on many speech recognition tasks, the use of fixed-point
parameter estimates in these models fails to account for the model
uncertainty associated with the words prediction. When given limited
training data, standard Transformer models are prone to over-fitting
and poor generalization. To model the parameter uncertainty in Trans-
former LMs, Bayesian neural networks can be adopted to treat the
model parameters Θ as a posterior probability distribution p(Θ|D).
Given the word history context, the word prediction at frame t is
computed as follows:

p(wt|w1, ...,wt−1)

=

∫
p(wt|w1, ...,wt−1,Θ)p(Θ|D)dΘ (8)

whereD represents the whole training set for model development and
p(Θ|D) denotes the posterior distribution of the model parameters
learned from the training data.

3.2. Variational Training for Bayesian Transformer LMs

To estimate the posterior distribution of the model parameters
p(Θ|D), the usual approach in Bayesian learning is to maximize the
marginal probability. However, computing this marginal distribution
L is intractable under the Transfomer LM framework. Thus, the fol-
lowing variational lower bound is often adopted as an approximation
[26]:

log p(D) = log

∫
p(D|Θ)pr(Θ)dΘ (9)

≥
N∑

n=1

log

∫
p(Wn|Θ)q(Θ)dΘ︸ ︷︷ ︸
L1

−KL(q(Θ)||pr(Θ))︸ ︷︷ ︸
L2

= L

(10)

where Wn denotes the n-th sentence in the training set D and N is
the total number of sentence in the training set. q(Θ) is the variational
approximation of the parameter posterior distribution p(Θ|D), pr(Θ)
is the prior distribution of Θ and KL(·||·) denotes the Kullback-
Leiber (KL) divergence. As shown in Equation (10), the variational
lower bound can be decomposed into two parts: 1) the expectation of
the log likelihood of the word sequence W over the approximated
posterior distribution q(Θ); 2) the KL divergence between q(Θ) and
the prior distribution pr(Θ). Equation (10) is used as the objective
function during the model training process.

As commonly adopted in [19], both q(Θ) and pr(Θ) are as-
sumed to be diagonal Gaussian distributions in this work:

q(Θ) = N (Θ;µµµ,σσσ), pr(Θ) = N (Θ;µµµr,σσσr) (11)

The expectation log likelihood term in Equation (10) can be efficiently
approximated by the Monte Carlo sampling method:

L1 ≈
1

K

K∑
k=1

p(D|Θk) (12)

where K is the number of samples and Θk is the k-th sample from
distribution q(Θ). It has been reported that directly using the mean µµµ
and variance σσσ to sample Θk can make the training process unstable.
To address this issue, the reparameterization trick [27] is adopted to
sample Θk as follows:
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Θ = µµµ+ σσσ � εεεk, εεεk ∼ N (0, I). (13)

Under the Gaussian assumption, the second term of Equation (10)
can be computed as:

KL(q(Θ)||pr(Θ)) =
∑
i

{
log

σr,i

σi
+
σ2
i + (µi − µr,i)

2

2σ2
r,i

− 1

2

}
(14)

where µi and σi are the i-th component of µµµ and σσσ respectively. The
gradient of the Bayesian model parameters µµµ and σσσ can be computed
using the standard back-propagation algorithm as follows:

∂L
∂µi

=
1

K

K∑
k=1

∂L1

∂µi
− µi − µr,i

σ2
j

(15)

∂L
∂σi

=
1

K

K∑
k=1

∂L1

∂σi
−
σ2
i − σ2

r,i

σ2
j

(16)

3.3. Implementation details of the Bayesian Transformer LM

The performance and efficiency of the proposed Bayesian Trans-
former LMs are affected by the follow details:
Position of uncertainty modelling: Although applying Bayesian
estimation to all model parameters in the Transformer LM is theoreti-
cally feasible, it is practically highly expensive in both model training
and evaluation. To solve this issue, the Bayesian estimation is only
applied on part of the model parameters to narrow down the scope of
uncertainty modelling. Equation (9) can be re-written as:

log p(D) = log

∫
p(D|Θ)pr(θθθ)dθθθ (17)

where θθθ ∈ Θ is the part of parameters associated with Bayesian
estimation. We applied Bayesian estimation to the feed forward and
multi-head self-attention modules in the Transformer block and the
embedding layer respectively. Specifically, when Bayesian inference
is applied on the multi-head attention layers, the query, key and value
weight matrices in Equation (2) are assumed to be independent among
themselves, thus separate variational distributions are used to model
the uncertainty associated with them.
Parameter sampling strategy: As shown in Equation (12), the
Bayesian Transformer LM requires Monte Carlo sampling to ap-
proximate the log likelihood. The computation cost of the model is
linearly increased respect to the number of samples K. To maintain
the Bayesian Transformer LM’s computation cost comparable to the
standard model, we set K = 1 during the training stage. As for eval-
uation, we use the mean of the Bayesian parameters to approximate
Equation (8) as follows:

p(wt|w1, ...,wt−1) ≈ p(wt|w1, ...,wt−1,Θmean) (18)

Choice of prior distribution: When training the Bayesian Trans-
former LM, a suitable choice of the prior is required. In our experi-
ments we used the parameters obtained from a standard Transformer
LM as the prior’s mean. The prior’s variance is set to be 1. All the
Transformer and Bayesian Transformer LMs are interpolated with
the 4gram LM.

4. EXPERIMENTAL SETUP

In this section, we present the details of the datasets used in the exper-
iments before introducing the baseline speech recognition systems.

4.1. Datasets

Switchboard and Fisher: The combined Switchboard and Fisher
transcriptions adopted in our experiments contain 34M words with a
30k vocabulary lexicon for language modelling.
DementiaBank Pitt: The small DementiaBank Pitt transcription [28]
adopted in our domain adaptation experiments contains 167k. A 3.6k
words recognition vocabulary was used.

4.2. Baseline Transformer LMs

The standard and Bayesian Transfomer LMs used in our experiments
contain 6 Transformer blocks with 4096 hidden nodes in the feed
forward module and 512 dimension for the residual connection. The
output dimensionality of the word embedding layer is set to be 512
and the input dimensionality is set to be equal to the vocabulary size
of the dataset. Pytorch was used to implement the Transformer LMs.
The model parameters are optimized using stochastic gradient descent
(SGD) optimizer with initial learning rate 0.1. All Transformer LMs
in our experiments are on word level. We use 1 Nvidia V100 GPUs
to train the LMs.

4.3. Baseline Speech Recognition Systems

Switchboard system: Following the Kaldi [29] recipe1, in the
Switchboard experiments, the speech recognition system used to gen-
erate the N-best list for rescoring was based on factorized time-delay
neural networks (TDNN-Fs) [30] featuring speech perturbation, i-
Vector, LHUC speaker adaptation and Lattice-free maximum mutual
information (LF-MMI) [31] sequence training.
DementiaBank Pitt system: The speech recognition system used
the DementiaBank Pitt experiments was similar to the TDNN-F based
Switchboard system with additional domain adaptation. Details of
this system can be found in [28].

5. EXPERIMENTS

In this section, we present our experimental results in terms of per-
plexity (PPL) and word error rate (WER) for the proposed Bayesian
Transformer LMs on the Switchboard and DementiaBank corpora.

5.1. Experiments on the Switchboard Corpus

Table 1 presents the experimental results of the proposed Transformer
language model on the Switchboard corpus. Several trends can be
observed from Table 1: 1) The proposed Bayesian Transformer LMs
(line 3-5) outperform the baseline Transformer language model (line
2) in terms of both perplexity and word error rate. 2) Applying the
Bayesian estimation on the feed forward (FF) module outperforms
using Bayesian estimation on the multi-head self-attention (MAH)
module and the embedding (EMB) layer in terms of the PPL and
WER; 3) Compared with applying Bayesian estimation to multiple
Transformer blocks (line 6 - 10), adopting Bayesian estimation only
on the lowest Transformer block (line 5) produced the best PPL and
WER performance. One possible explanation of this observation is
that the parameters associated with the higher Transformer blocks
are expected to be more deterministic than those in the lower blocks,
while the larger part of the underlying data variability is expected
at the lowest block immediately after the embedding layer. 4) Fur-
ther performance improvements can be obtained by interpolating the
Bayesian Transform LM with the standard Transformer LM (line
11-14).

1Kaldi: egs/swbd/s5c/local/chain/tuning/run tdnn 7q.sh
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Table 1: Perplexity and WER(%) of the baseline 4-gram (4g) LM, Transformer LM and various Bayesian Transformer LMs before and after
further interpolation with the baseline Transformer on NIST Switchboard English eval2000, rt02 and rt03 test sets. FF, MHA and EMB
represent the feed forward, multi-head self-attention and the embedding layer respectively. ”+4g” denotes interpolation with 4gram. ”†”
denotes statistically significant results were obtained over the Transformer baseline (line 2).

ID LM
Bayesian PPL eval2000 rt02 rt03

Block Position (swbd) swbd callhm swbd1 swbd2 swbd3 fsh swbd

1 4gram Not Applied - 9.7 18.0 11.5 15.3 20.0 12.6 19.5
2 Transformer(+4g) Not Applied 41.50 7.9 15.7 9.5 12.8 17.4 10.4 17.3

3

Bayes Transformer(+4g)

- EMB 41.01 7.7 15.6 9.5 12.6 17.1† 10.2 17.1†

4 1 MHA 40.95 7.7 15.5 9.5 12.5† 17.1† 10.2 17.1†

5 1 FF 40.65 7.7 15.4† 9.4 12.6† 17.0† 10.2† 17.0†

6 1-2 FF 41.11 7.7 15.6 9.5 12.6 17.2 10.3 17.1
7 1-3 FF 42.45 7.8 15.8 9.5 12.7 17.2 10.3 17.2
8 1-4 FF 47.54 8.0 16.0 9.9 13.0 17.6 10.7 17.5
9 1-5 FF 54.19 8.3 16.2 10.2 13.5 18.0 11.1 18.0

10 1-6 FF 74.50 8.9 17.3 10.8 14.3 18.7 12.0 18.8

11
+Transformer(+4g)

- EMB 40.03 7.7 15.5 9.4 12.6† 17.1† 10.1† 17.0†

12 1 MHA 39.70 7.6† 15.4† 9.3 12.5† 17.0† 10.1† 16.9†

13 1 FF 39.42 7.6† 15.2† 9.3 12.5† 17.0† 10.1† 16.9†

The Bayesian Transformer LM with parameter uncertainty modelled
at the lowest feed forward layer produced the best performance after
interpolation with both the 4-gram and baseline Transformer (line 13).
Statistically significant WER reductions of 0.3-0.5% were obtained
across all the data sets except the swbd1 portion of rt02 over the
baseline Transformer LM (line 2). The statistical significance test
was conducted at level 0.5 based on matched pairs sentence-segment
word error (MAPSSWE) for recognition performance analysis.

To further analyse the proposed Bayesian Transformer LM’s
ability in reducing the risk of overfitting and improving generalization,
Figure 2 compares the performance between the proposed Bayesian
Transformer LM (line 5 in Table 1) and the standard Transformer
with and without the dropout operation. As shown in Figure 2, the
proposed Bayesian LM consistently outperforms the other two LMs
with varying feed forward module dimensionality from 512 to 16384.

Fig. 2: Perplexity on SWBD test data obtained using the baseline
and the Bayesian Transformer LMs with varying feed forward layer
dimensionality.

5.2. Experiments on the DementiaBank Pitt Corpus

The PPL and WER results on the DementiaBank Corpus are presented
in Table 2. The 4gram, Transformer and Bayesian Transformer LMs
were first trained using the combined 2.4M words DementiaBank
Pitt, Switchboard and Fisher transcriptions. To reduce the domain
mismatch between the three corpora, the baseline and Bayesian Trans-

former LMs were further adapted to the Pitt transcripts only by using
either fine-tuning or Bayesian adaptation. This two adapted Trans-
former LMs are shown in line 3 and 5 in Table 2 respectively. The
fine-tuning adapted model parameters in line 3 served as the prior of
the Bayesian Transformer adaptation in line 5. It can be observed
from Table 2 that the Bayesian adapted Transformer LM outperforms
the fine-tuned Transformer LM by 0.37% absolute WER reduction.

Table 2: PPL and WER(%) results on the DemntiaBank Pitt Corpus.
”finetune” means fine-tuning the model parameters using only the
DemntiaBank Pitt Corpus. ”bayes-adapt” mean adapt the Bayesian
Transformer using only the DemntiaBank Pitt Corpus LM with the
parameters in system 4 as prior. ”+4g” denotes interpolation with
4gram. ”†” denotes statistically significant results were obtained over
the system 3.

ID LMs Adapt PPL WER(%)

1 4gram 7 17.07 30.67
2

Transformer(+4g)
7 21.83 30.65

3 fine-tuning 14.56 30.25

4
Bayes Transformer(+4g)

7 19.88 30.49
5 bayes-adapt 13.99 29.88†

6. CONCLUSION

This paper presents a Bayesian learning framework for Transformer
language model estimation to improve their generalization perfor-
mance. Consistent performance improvements in terms of both per-
plexity and WER were obtained on the Swithboard and Dementia-
Bank Pitt datasets, thus demonstrating the advantages of the proposed
Bayesian Transformer LMs for speech recognition.
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